1/31/2021 C Programming-Constants and Preprocessor Directives

Hands On C
500 Working Programs

Constants and
Preprocessor Directives

Understanding Preprocssing

In []: #include <stdio.h>

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 1/16

1/31/2021 C Programming-Constants and Preprocessor Directives

In [1]: int main(void)

{
}

printf("Hello, world!");

/tmp/tmp5g@zagbn.c: In function ‘main’:
/tmp/tmp5g@zagbn.c:3:4: warning: implicit declaration of function ‘printf’ [-Wi
mplicit-function-declaration]

printf("Hello, world!");

/tmp/tmp5g@zagbn.c:3:4: warning: incompatible implicit declaration of built-in
function ‘printf’
/tmp/tmp5g@zagbn.c:3:4: note: include ‘<stdio.h>’ or provide a declaration of

‘printf’

Hello, world!

Defining a Constant

In [4]: #include <stdio.h>

int main(void)

{
int pet = 1; // 1 for dogs, © for cats

if (pet == 1)
printf("Dogs are great\n");
else

printf("Cats are great\n");

Dogs are great

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 2/16

1/31/2021

In [6]:

In [8]:

C Programming-Constants and Preprocessor Directives

#include <stdio.h>
#tdefine DOG 1 // No equal sign, no semicolon
#tdefine CAT ©

int main(void)
{
int pet = DOG;
if (pet == DOG)
printf("Dogs are great\n");

else
printf("Cats are great\n");

Dogs are great

#include <stdio.h>
#tdefine BUFFER_SIZE 128 // No equal sign, no semicolon

int main(void)

{

char title[BUFFER_SIZE] = "C Programming Complete 500 Complete Programs";

printf("%s", title);
}

C Programming Complete 500 Complete Programs

Using the _ FILE __ Constant

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb

3/16

1/31/2021 C Programming-Constants and Preprocessor Directives

In [10]: #include <stdio.h>

int main(void)
{
printf("This file is %s\n", _ FILE_);

This file is /tmp/tmpbumpjxtl.c

Using the _ LINE__ Constant

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 4/16

1/31/2021

In [12]: #include <stdio.h>

int main(void)

{

int count;

C Programming-Constants and Preprocessor Directives

printf("About to start loop line %d\n", __ LINE_);
for (count = ©; count < 10; count++)

if (count % 2

1)

printf("%d is odd\n", count);

else

printf("%d is even\n", count);

printf("Ended loop line %d\n", __ LINE_);

}

About to start loop line 7

is
is
is
is
is
is
is
is
is
is

VoNOOTUVUPA,WNEO

Ended loop line 15

even
odd
even
odd
even
odd
even
odd
even
odd

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb

5/16

1/31/2021 C Programming-Constants and Preprocessor Directives

Controlling LINE and FILE

In [14]: #include <stdio.h>

int main(void)

{

#line 100 "Demo.c"

int count;

printf("In %s About to start loop line %d\n", __ FILE__, _ LINE_);

for (count = ©; count < 10; count++)
{
if (count % 2 == 1)
printf("%d is odd\n", count);
else
printf("%d is even\n", count);

}
printf("Ended loop line %d\n", __ LINE_);

}

In Demo.c About to start loop line 103
@ is even
1 is odd
2 is even
3 is odd
4 is even
5 is odd
6 is even
7 is odd
8 is even
9 is odd
Ended loop line 111

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb

6/16

1/31/2021 C Programming-Constants and Preprocessor Directives

Ending Compilation Using #error

In [15]: #include <stdio.h>

int main(void)

{

int count = ©;
#terror Code is not complete -- still has bug

for (; count < 10; count++)
printf("%d ", count);

/tmp/tmpjdin@our.c: In function ‘main’:
/tmp/tmpjdin@our.c:7:2: error: #error Code is not complete -- still has bug
#terror Code is not complete -- still has bug

ANNNN

[C kernel] GCC exited with code 1, the executable will not be executed

Noting the Preprocessor's Date and Time

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 7/16

1/31/2021 C Programming-Constants and Preprocessor Directives
In [16]: #include <stdio.h>

int main(void)
{
printf("Date %s and Time %s compiled\n", _ DATE_, TIME_);

}

Date Jan 20 2021 and Time 20:04:30 compiled

Testing If a Constant is Defined

#ifdef CONSTANT
// statement
f#tendif

#ifdef CONSTANT
// statements
f#telse
// statements
ttendif

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 8/16

1/31/2021 C Programming-Constants and Preprocessor Directives
In [17]: #include <stdio.h>

int main(void)
{
#ifdef _ STDC__

printf("ANSI C Compliant Compiler\n");
#telse

printf("Compiler NOT ANSI C Compliant");
#endif

ANSI C Compliant Compiler

Testing for C Versus C++

In [18]: #include <stdio.h>

int main(void)
{
#ifdef _ cplusplus
printf("C++ Compiler\n");
#telse
printf("C Compiler");
#endif

C Compiler

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 9/16

1/31/2021 C Programming-Constants and Preprocessor Directives

Undefining a Constant

In [24]: #include <stdio.h>
#define BIG 10

int main(void)

{
#define BIG 100
for (int count = @; count < BIG; count++)
printf("%d ", count);
}

012345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 5
6 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 10/16

1/31/2021 C Programming-Constants and Preprocessor Directives
In [25]: #include <stdio.h>
#define BIG 10

int main(void)

{
#undef BIG
#define BIG 100
for (int count = ©; count < BIG; count++)
printf("%d ", count);
}

012345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 5
6 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

Understanding Compiler Directives
(Pragmas)

In [26]: #pragma pragma_name value

/tmp/tmplssfrcv5.out: /tmp/tmpnr5ogjny.out: undefined symbol: main
[C kernel] Executable exited with code 1

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 11/16

1/31/2021

C Programming-Constants and Preprocessor Directives

Creating a Macro

In [33]: #include <stdio.h>

#define SQUARE(x) ((x)*(x))

int main(void)

{

for (int count = 1; count <= 10; count++)
printf("%d squared is %d\n", count, SQUARE(count));

squared
squared
squared
squared
squared
squared
squared
squared
squared

OWoONOOUVTDS WNER

10 squared is 100

is
is
is
is
is
is
is
is
is

1
4
9
16
25
36
49
64
81

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb

12/16

1/31/2021 C Programming-Constants and Preprocessor Directives

Be Careful with Macros

In [36]: #include <stdio.h>
#tdefine SQUARE(Xx) x*x

int main(void)
{
printf("5 squared is %d\n", SQUARE(5));
printf("3+2 squared is %d\n", SQUARE(3+2));
}

5 squared is 25
3+2 squared is 11

In[]: printf("5 squared is %d\n", SQUARE(5));
becomes
printf("5 squared is %d\n", 5%*5);
printf("3+2 squared is %d\n", SQUARE(3+2));
becomes

printf("3+2 squared is %d\n", 3+2*3+2); // 3+6+2 => 11

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 13/16

1/31/2021 C Programming-Constants and Preprocessor Directives

Creating Some Sample Macros

In [44]: #include <stdio.h>

#tdefine MIN(x, y) ((x) < (y) ? (xX): (y)) // No semicolons
#tdefine MAX(x, y) ((x) > (y) ? (xX): (¥))

#tdefine SUM(x, y) ((x)+(y))

#tdefine CUBE(x) ((x)*(x)*(x))

int main(void)

{
printf("Minimum of %d and %d is %d\n", 5, 3, MIN(5, 3));
printf("Maximum of %d and %d is %d\n", 5+2, 3+3, MAX(5+2, 3+3));
printf("Cube of %d is %d\n", 9, CUBE(9));
printf("Cube of %d is %d\n", 9+1, CUBE(9+1));
printf("Sum of %d and %d is %d\n", 9, 7+1, SUM(9, 7+1));

}

Minimum of 5 and 3 is 3
Maximum of 7 and 6 is 7
Cube of 9 is 729

Cube of 10 is 1000

Sum of 9 and 8 is 17

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 14/16

1/31/2021 C Programming-Constants and Preprocessor Directives

Macros Are Typeless

In [47]: #include <stdio.h>
#tdefine CUBE(x) ((x)*(x)*(x))
int main(void)
{

printf("Cube of %d is %d\n", 9, CUBE(9));
printf("Cube of %f is %f\n", 7.7, CUBE(7.7));

Cube of 9 is 729
Cube of 7.700000 is 456.533000

What You will Learn Next

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 15/16

1/31/2021 C Programming-Constants and Preprocessor Directives

As you have learned, programs store data in variables when they run. A variable
normally stores only one value of a specific type, such as an int or a float.
Often, our programs must work with multiple values of the same type, such as a
class's test scores, a list of product prices, and so on. An array is a data
structure that stores multiple values of the same type.

int array[5] = { 10, 20, 30, 40, 50 };

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 16/16

