
1/31/2021 C Programming-Constants and Preprocessor Directives

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 1/16

Understanding Preprocssing
In []:

#include <stdio.h>

1/31/2021 C Programming-Constants and Preprocessor Directives

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 2/16

In [1]:

Defining a Constant
In [4]:

/tmp/tmp5q0zaqbn.c: In function ‘main’:
/tmp/tmp5q0zaqbn.c:3:4: warning: implicit declaration of function ‘printf’ [-Wi
mplicit-function-declaration]
 printf("Hello, world!");
 ^~~~~~
/tmp/tmp5q0zaqbn.c:3:4: warning: incompatible implicit declaration of built-in
function ‘printf’
/tmp/tmp5q0zaqbn.c:3:4: note: include ‘<stdio.h>’ or provide a declaration of
‘printf’

Hello, world!

Dogs are great

int main(void)
{
 printf("Hello, world!");
}

#include <stdio.h>

int main(void)
{
 int pet = 1; // 1 for dogs, 0 for cats

 if (pet == 1)
 printf("Dogs are great\n");
 else
 printf("Cats are great\n");
}

1/31/2021 C Programming-Constants and Preprocessor Directives

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 3/16

In [6]:

In [8]:

Dogs are great

C Programming Complete 500 Complete Programs

#include <stdio.h>
#define DOG 1 // No equal sign, no semicolon
#define CAT 0

int main(void)
{
 int pet = DOG;

 if (pet == DOG)
 printf("Dogs are great\n");
 else
 printf("Cats are great\n");
}

#include <stdio.h>

#define BUFFER_SIZE 128 // No equal sign, no semicolon

int main(void)
{
 char title[BUFFER_SIZE] = "C Programming Complete 500 Complete Programs";

 printf("%s", title);
}

Using the __FILE__ Constant

1/31/2021 C Programming-Constants and Preprocessor Directives

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 4/16

In [10]:

This file is /tmp/tmpbumpjxtl.c

#include <stdio.h>

int main(void)
{
 printf("This file is %s\n", __FILE__);
}

Using the __LINE__ Constant

1/31/2021 C Programming-Constants and Preprocessor Directives

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 5/16

In [12]:

About to start loop line 7
0 is even
1 is odd
2 is even
3 is odd
4 is even
5 is odd
6 is even
7 is odd
8 is even
9 is odd
Ended loop line 15

#include <stdio.h>

int main(void)
{
 int count;

 printf("About to start loop line %d\n", __LINE__);
 for (count = 0; count < 10; count++)
 {
 if (count % 2 == 1)
 printf("%d is odd\n", count);
 else
 printf("%d is even\n", count);
 }
 printf("Ended loop line %d\n", __LINE__);
}

1/31/2021 C Programming-Constants and Preprocessor Directives

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 6/16

Controlling LINE and FILE
In [14]:

In Demo.c About to start loop line 103
0 is even
1 is odd
2 is even
3 is odd
4 is even
5 is odd
6 is even
7 is odd
8 is even
9 is odd
Ended loop line 111

#include <stdio.h>

int main(void)
{

#line 100 "Demo.c"

 int count;

 printf("In %s About to start loop line %d\n", __FILE__, __LINE__);
 for (count = 0; count < 10; count++)
 {
 if (count % 2 == 1)
 printf("%d is odd\n", count);
 else
 printf("%d is even\n", count);
 }
 printf("Ended loop line %d\n", __LINE__);
}

1/31/2021 C Programming-Constants and Preprocessor Directives

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 7/16

Ending Compilation Using #error
In [15]:

Noting the Preprocessor's Date and Time

/tmp/tmpjd1n0our.c: In function ‘main’:
/tmp/tmpjd1n0our.c:7:2: error: #error Code is not complete -- still has bug
 #error Code is not complete -- still has bug
 ^~~~~
[C kernel] GCC exited with code 1, the executable will not be executed

#include <stdio.h>

int main(void)
{
 int count = 0;

#error Code is not complete -- still has bug

 for (; count < 10; count++)
 printf("%d ", count);
}

1/31/2021 C Programming-Constants and Preprocessor Directives

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 8/16

In [16]:

Testing If a Constant is Defined

Date Jan 20 2021 and Time 20:04:30 compiled

#include <stdio.h>

int main(void)
{
 printf("Date %s and Time %s compiled\n", __DATE__, __TIME__);
}

#ifdef CONSTANT
 // statement
#endif

#ifdef CONSTANT
 // statements
#else
 // statements
#endif

1/31/2021 C Programming-Constants and Preprocessor Directives

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 9/16

In [17]:

Testing for C Versus C++
In [18]:

ANSI C Compliant Compiler

C Compiler

#include <stdio.h>

int main(void)
{
 #ifdef __STDC__
 printf("ANSI C Compliant Compiler\n");
 #else
 printf("Compiler NOT ANSI C Compliant");
 #endif
}

#include <stdio.h>

int main(void)
{
 #ifdef __cplusplus
 printf("C++ Compiler\n");
 #else
 printf("C Compiler");
 #endif

}

1/31/2021 C Programming-Constants and Preprocessor Directives

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 10/16

Undefining a Constant
In [24]:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 5
6 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

#include <stdio.h>

#define BIG 10

int main(void)
{
 #define BIG 100

 for (int count = 0; count < BIG; count++)
 printf("%d ", count);
}

1/31/2021 C Programming-Constants and Preprocessor Directives

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 11/16

In [25]:

Understanding Compiler Directives
(Pragmas)

In [26]:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 5
6 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

/tmp/tmplssfrcv5.out: /tmp/tmpnr5ogjny.out: undefined symbol: main
[C kernel] Executable exited with code 1

#include <stdio.h>

#define BIG 10

int main(void)
{
 #undef BIG
 #define BIG 100

 for (int count = 0; count < BIG; count++)
 printf("%d ", count);
}

#pragma pragma_name value

1/31/2021 C Programming-Constants and Preprocessor Directives

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 12/16

Creating a Macro
In [33]:

1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16
5 squared is 25
6 squared is 36
7 squared is 49
8 squared is 64
9 squared is 81
10 squared is 100

#include <stdio.h>
#define SQUARE(x) ((x)*(x))

int main(void)
{
 for (int count = 1; count <= 10; count++)
 printf("%d squared is %d\n", count, SQUARE(count));
}

1/31/2021 C Programming-Constants and Preprocessor Directives

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 13/16

Be Careful with Macros
In [36]:

In []:

5 squared is 25
3+2 squared is 11

#include <stdio.h>
#define SQUARE(x) x*x

int main(void)
{
 printf("5 squared is %d\n", SQUARE(5));
 printf("3+2 squared is %d\n", SQUARE(3+2));
}

 printf("5 squared is %d\n", SQUARE(5));

 becomes

 printf("5 squared is %d\n", 5*5);

 printf("3+2 squared is %d\n", SQUARE(3+2));

 becomes

 printf("3+2 squared is %d\n", 3+2*3+2); // 3+6+2 => 11

1/31/2021 C Programming-Constants and Preprocessor Directives

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 14/16

Creating Some Sample Macros
In [44]:

Minimum of 5 and 3 is 3
Maximum of 7 and 6 is 7
Cube of 9 is 729
Cube of 10 is 1000
Sum of 9 and 8 is 17

#include <stdio.h>

#define MIN(x, y) ((x) < (y) ? (x): (y)) // No semicolons
#define MAX(x, y) ((x) > (y) ? (x): (y))
#define SUM(x, y) ((x)+(y))
#define CUBE(x) ((x)*(x)*(x))

int main(void)
{
 printf("Minimum of %d and %d is %d\n", 5, 3, MIN(5, 3));
 printf("Maximum of %d and %d is %d\n", 5+2, 3+3, MAX(5+2, 3+3));

 printf("Cube of %d is %d\n", 9, CUBE(9));
 printf("Cube of %d is %d\n", 9+1, CUBE(9+1));

 printf("Sum of %d and %d is %d\n", 9, 7+1, SUM(9, 7+1));
}

1/31/2021 C Programming-Constants and Preprocessor Directives

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 15/16

Macros Are Typeless
In [47]:

What You will Learn Next

Cube of 9 is 729
Cube of 7.700000 is 456.533000

#include <stdio.h>

#define CUBE(x) ((x)*(x)*(x))

int main(void)
{
 printf("Cube of %d is %d\n", 9, CUBE(9));
 printf("Cube of %f is %f\n", 7.7, CUBE(7.7));
}

1/31/2021 C Programming-Constants and Preprocessor Directives

localhost:8888/notebooks/C Programming-Constants and Preprocessor Directives.ipynb 16/16

As you have learned, programs store data in variables when they run. A variable
normally stores only one value of a specific type, such as an int or a float.
Often, our programs must work with multiple values of the same type, such as a
class's test scores, a list of product prices, and so on. An array is a data
structure that stores multiple values of the same type.

int array[5] = { 10, 20, 30, 40, 50 };

