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Hands On C
500 Working Programs

Constants and
Preprocessor Directives

Understanding Preprocssing

In [ ]: #include <stdio.h>
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In [1]: int main(void)

{
}

printf("Hello, world!");

/tmp/tmp5g@zagbn.c: In function ‘main’:
/tmp/tmp5g@zagbn.c:3:4: warning: implicit declaration of function ‘printf’ [-Wi
mplicit-function-declaration]

printf("Hello, world!");

/tmp/tmp5g@zagbn.c:3:4: warning: incompatible implicit declaration of built-in
function ‘printf’
/tmp/tmp5g@zagbn.c:3:4: note: include ‘<stdio.h>’ or provide a declaration of

‘printf’

Hello, world!

Defining a Constant

In [4]: #include <stdio.h>

int main(void)

{
int pet = 1; // 1 for dogs, © for cats

if (pet == 1)
printf("Dogs are great\n");
else

printf("Cats are great\n");

Dogs are great
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In [6]:

In [8]:

C Programming-Constants and Preprocessor Directives

#include <stdio.h>
#tdefine DOG 1 // No equal sign, no semicolon
#tdefine CAT ©

int main(void)
{
int pet = DOG;
if (pet == DOG)
printf("Dogs are great\n");

else
printf("Cats are great\n");

Dogs are great

#include <stdio.h>
#tdefine BUFFER_SIZE 128 // No equal sign, no semicolon

int main(void)

{

char title[BUFFER_SIZE] = "C Programming Complete 500 Complete Programs";

printf("%s", title);
}

C Programming Complete 500 Complete Programs

# Using the _ FILE __ Constant
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In [10]: #include <stdio.h>

int main(void)
{
printf("This file is %s\n", _ FILE_);

This file is /tmp/tmpbumpjxtl.c

# Using the _ LINE__ Constant
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In [12]: #include <stdio.h>

int main(void)

{

int count;

C Programming-Constants and Preprocessor Directives

printf("About to start loop line %d\n", __ LINE_ );
for (count = ©; count < 10; count++)

if (count % 2

1)

printf("%d is odd\n", count);

else

printf("%d is even\n", count);

printf("Ended loop line %d\n", __ LINE_ );

}

About to start loop line 7

is
is
is
is
is
is
is
is
is
is
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Ended loop line 15

even
odd
even
odd
even
odd
even
odd
even
odd
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Controlling LINE and FILE

In [14]: #include <stdio.h>

int main(void)

{

#line 100 "Demo.c"

int count;

printf("In %s About to start loop line %d\n", __ FILE__, _ LINE_);

for (count = ©; count < 10; count++)
{
if (count % 2 == 1)
printf("%d is odd\n", count);
else
printf("%d is even\n", count);

}
printf("Ended loop line %d\n", __ LINE_ );

}

In Demo.c About to start loop line 103
@ is even
1 is odd
2 is even
3 is odd
4 is even
5 is odd
6 is even
7 is odd
8 is even
9 is odd
Ended loop line 111
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Ending Compilation Using #error

In [15]: #include <stdio.h>

int main(void)

{

int count = ©;
#terror Code is not complete -- still has bug

for ( ; count < 10; count++)
printf("%d ", count);

/tmp/tmpjdin@our.c: In function ‘main’:
/tmp/tmpjdin@our.c:7:2: error: #error Code is not complete -- still has bug
#terror Code is not complete -- still has bug

ANNNN

[C kernel] GCC exited with code 1, the executable will not be executed

Noting the Preprocessor's Date and Time
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In [16]: #include <stdio.h>

int main(void)
{
printf("Date %s and Time %s compiled\n", _ DATE_, TIME_ );

}

Date Jan 20 2021 and Time 20:04:30 compiled

Testing If a Constant is Defined

#ifdef CONSTANT
// statement
f#tendif

#ifdef CONSTANT
// statements
f#telse
// statements
ttendif
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In [17]: #include <stdio.h>

int main(void)
{
#ifdef _ STDC__

printf("ANSI C Compliant Compiler\n");
#telse

printf("Compiler NOT ANSI C Compliant");
#endif

ANSI C Compliant Compiler

Testing for C Versus C++

In [18]: #include <stdio.h>

int main(void)
{
#ifdef _ cplusplus
printf("C++ Compiler\n");
#telse
printf("C Compiler");
#endif

C Compiler
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Undefining a Constant

In [24]: #include <stdio.h>
#define BIG 10

int main(void)

{
#define BIG 100
for (int count = @; count < BIG; count++)
printf("%d ", count);
}

012345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 5
6 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
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In [25]: #include <stdio.h>
#define BIG 10

int main(void)

{
#undef BIG
#define BIG 100
for (int count = ©; count < BIG; count++)
printf("%d ", count);
}

012345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 5
6 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

Understanding Compiler Directives
(Pragmas)

In [26]: #pragma pragma_name value

/tmp/tmplssfrcv5.out: /tmp/tmpnr5ogjny.out: undefined symbol: main
[C kernel] Executable exited with code 1
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Creating a Macro

In [33]: #include <stdio.h>

#define SQUARE(x) ((x)*(x))

int main(void)

{

for (int count = 1; count <= 10; count++)
printf("%d squared is %d\n", count, SQUARE(count));

squared
squared
squared
squared
squared
squared
squared
squared
squared

OWoONOOUVTDS WNER

10 squared is 100

is
is
is
is
is
is
is
is
is

1
4
9
16
25
36
49
64
81
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Be Careful with Macros

In [36]: #include <stdio.h>
#tdefine SQUARE(Xx) x*x

int main(void)
{
printf("5 squared is %d\n", SQUARE(5));
printf("3+2 squared is %d\n", SQUARE(3+2));
}

5 squared is 25
3+2 squared is 11

In[ ]: printf("5 squared is %d\n", SQUARE(5));
becomes
printf("5 squared is %d\n", 5%*5);
printf("3+2 squared is %d\n", SQUARE(3+2));
becomes

printf("3+2 squared is %d\n", 3+2*3+2); // 3+6+2 => 11
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Creating Some Sample Macros

In [44]: #include <stdio.h>

#tdefine MIN(x, y) ((x) < (y) ? (xX): (y)) // No semicolons
#tdefine MAX(x, y) ((x) > (y) ? (xX): (¥))

#tdefine SUM(x, y) ((x)+(y))

#tdefine CUBE(x) ((x)*(x)*(x))

int main(void)

{
printf("Minimum of %d and %d is %d\n", 5, 3, MIN(5, 3));
printf("Maximum of %d and %d is %d\n", 5+2, 3+3, MAX(5+2, 3+3));
printf("Cube of %d is %d\n", 9, CUBE(9));
printf("Cube of %d is %d\n", 9+1, CUBE(9+1));
printf("Sum of %d and %d is %d\n", 9, 7+1, SUM(9, 7+1));

}

Minimum of 5 and 3 is 3
Maximum of 7 and 6 is 7
Cube of 9 is 729

Cube of 10 is 1000

Sum of 9 and 8 is 17
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Macros Are Typeless

In [47]: #include <stdio.h>
#tdefine CUBE(x) ((x)*(x)*(x))
int main(void)
{

printf("Cube of %d is %d\n", 9, CUBE(9));
printf("Cube of %f is %f\n", 7.7, CUBE(7.7));

Cube of 9 is 729
Cube of 7.700000 is 456.533000

What You will Learn Next
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As you have learned, programs store data in variables when they run. A variable
normally stores only one value of a specific type, such as an int or a float.
Often, our programs must work with multiple values of the same type, such as a
class's test scores, a list of product prices, and so on. An array is a data
structure that stores multiple values of the same type.

int array[5] = { 10, 20, 30, 40, 50 };
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